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FOREWORD 

As a slender-nosed vehicle (aircraft or missile) flies at higher angles of 
incidence, the lee flow which is attached at low angle of attack becomes separated 
and two counter-rotating vortices are formed. If the angle of incidence of the vehicle 
is below the slender-nose included angle, these vortices will be symmetric with 
respect to the geometric symmetry plane as long as the free-stream velocity vector 
remains in this plane. At angles of attack higher than a critical value (approximately 
the nose included angle), the separation vortices can become asymmetric even 
though the free-stream velocity is in the geometric symmetry plane. The cause of this 
phenomenon is the subject of this investigation. At even higher angles of attack, the 
flow will become unsteady with a Karman vortex street being shed downstream. This 
second phenomenon was not considered in the current research project. The 
investigation used computational fluid dynamics as a tool to uncover the fundamental 
cause of asymmetric separated flows. The appearance of new flow features as the 
critical angle of attack was approached was studied in detail. Isolating asymmetric 
disturbances to specific portions of the flow was also attempted. The stability of the 
symmetric flow above the critical angle of attack was investigated analytically. 
Finally, the transition of the flow from symmetric to asymmetric as the computation was 
continued was studied in detail. All of these studies indicated that the interaction of 
the vortices in the cross flow plane results in an instability in the symmetric flow, and 
only an asymmetry can stabilize the flow. The findings of this research have localized 
the instability to the lee plane region of the flow but it can not be isolated to any 
particular singular point. The interaction between the vortices seems to be the cause 
of the instability, and this interaction is somewhat global in nature. 
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1.  BACKGROUND 

High angle-of-attack maneuvering demands on both aircraft and missiles make 
the phenomenon of asymmetric separated flows of primary concern. Since the late 
1940s, it has been known that the sudden onset of asymmetric vortex flow is the 
cause of an unexpected and significant yawing force experienced by slender-nosed 
aircraft. As a sJender-nosed missile or aircraft is pitched through increasing angles of 
attack, the flow that had been symmetric about the plane containing the free-stream 
velocity vector can suddenly become asymmetric. It has been found experimentally 
that this is related to the vortices that spring from the separation points and sit above 
the nose near the lee plane of "symmetry." Below a critical angle of attack, the lee 
plane is indeed a plane about which the flow is symmetric. Once beyond the critical 
angle of attack, these separation vortices suddenly become asymmetrically disposed. 
At even higher angles of attack, the flow will become unsteady, and the vortices will 
be shed and carried downstream periodically as in a Karman vortex street. In this 
research, only steady asymmetric flows were studied, and angles of attack much 
greater than the critical value were not considered. 

The surface pressure distribution is related very closely to vortex strength and 
location near the lee plane, so that once the vortices become asymmetric, so does 
the surface pressure. This asymmetric surface pressure results in a side force which, 
because of its sudden onset, can create control problems for a vehicle. Currently, 
there are a number of studies in this country directed toward harnessing this side 
force for lateral control augmentation. At angles of attack near 40 deg, the vertical tail 
of an aircraft is in the separation zone of the wings so that the rudder is somewhat 
ineffective as a lateral control device. If the aircraft is to maneuver at these angles of 
attack, another source of side force must be found. If the onset, directionality, and 
degree of asymmetric vortex flow can be controlled, the resulting side force can be 
used to supplement rudder control at high angle of attack. 

Ever since asymmetric separation was first discovered, its fundamental cause 
has been debated. Experimentalists have, over the years, been able to affect and 
control the phenomenon to some extent (Ref 1). They have found that blunting the 
nose of slender vehicles delays, in terms of angle of attack, the onset of side force 
(Ref 2).    Strakes have been used quite effectively in almost eliminating this 
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phenomenon (Ret 3). Tangential blowing has also been used to control the 
asymmetry (Ret 4). It has been found that Reynolds number effects are limited to the 
turbulent state of the flow. These effects are significant but are confined to the 
separation pattern of the cross-flow (Ref 5). Increasing Mach number reduces the 
side force significantly, all other parameters being fixed (Ref 6). None of these 
experimental studies have addressed the fundamental cause of the anomaly. Over 
the past ten years, a number of computational/analytical studies have been 
presented. The work at the RAE (Ref 7) with a simple vortex line model was a 
breakthrough in understanding this phenomenon. Dyer, Fiddes, and Smith (Ref 7) 
found a bifurcation in the solution to the small disturbance equations combined with 
Bryson's (Ref 8) simple vortex line model. This model is irrotational everywhere 
except at an infinitesimal feeding vortex sheet that springs from specified separation 
point locations. Below a critical angle of attack there is only one solution, its vortices 
symmetrically located about the lee plane as long as the separation points are 
symmetric. Above the critical angle of attack there are three solutions: the symmetric 
(as long as the specified separation points are symmetric) and two mirror image 
asymmetric solutions. This analytical/computational result indicates that the 
phenomenon is natural, i. e., not due to any experimental inaccuracies and, in fact, is 
controlled by a purely inviscid mechanism. Fiddes extended this work by replacing 
the line vortices by vortex sheets (Ref 9). He found the same bifurcation at a critical 
angle of attack. 

Using the Kutta condition development at RAE (Ref 10) the present author was 
able to predict separated flows with an Euler model. The condition was modified and 
applied successfully to primary and secondary separation, on cones (Ref 11) delta 
wings (Ref 12), and cone cylinders (Ref 13) at high angle of attack and supersonic 
speeds. More importantly, it was found that if the symmetry condition was relaxed, the 
supersonic flow over a cone with separation modeled via a Kutta condition could 
become asymmetric. As a matter of fact, unlike the small disturbance results of 
Fiddes, the Euler equations predicted that the symmetric solution was impossible to 
compute to convergence, and only the two mirror image asymmetric results were 
obtained. These findings were published in the 10th International Conference on 
Numerical Methods in Fluid Dynamics (Ref 14). 

Both the small disturbances and Euler models require the locations of 
separation to be specified.    The locations are dependent upon the detail of the 



viscid/inviscid interaction. The interaction and the resulting separation location can 

be determined by solving the Navier-Stokes equation. Siclari and Marconi (Ret 15) 

were able to obtain "locally conical" steady laminar Navier-Stokes full-plan? solutions 

for a 5-deg cone at a supersonic Mach number of 1.8 that exhibited a continuous 

range of naturally occurring bifurcated solutions without the imposition of a viscous 

separation model, geometric perturbation, or asymmetric boundary condition. Unlike 

other studies (Ref 16), it was found in Ref 15 that the asymmetric conical viscous 

solutions could be achieved naturally without any geometric irregularities or other 

perturbations to maintain them. These naturally occurring "locally conical" 

asymmetric solutions were verified by other investigations such as Kandil, Wong, and 

Liu (Ref 17) and Rosen and Davis (Ref 18) using other viscous codes. Thomas (Ref 

18) performed a detailed study of the effect of local Reynolds number on the 

computation of these conical flows. It was found that the asymmetry is reduced as the 

Reynolds number is decreased, to the point where the side force which was 

comparable to the normal force at Rei_=106 is insignificant at Reu=3x104. 

This naturally occurring phenomenon may be distinct from another 

phenomenon noted by Degani and Schiff (Ref 18) where small geometric or other flow 

perturbations at the apex may trigger or be amplified into a more global asymmetric 

flow behavior. Hartwich et al. (Ref 18) recently found both phenomena. First, Navier- 

Stokes solutions were obtained that exhibited asymmetries with no asymmetric 

perturbation maintained. Then Hartwich showed how small geometric perturbations at 

the nose of a cone/cylinder can be amplified. These phenomena have been noted 

experimentally for a number of years. Recent experimental studies have indicated two 

angle-of-attack regimes where steady asymmetric flow exists. In the lower regime, the 

asymmetric flow is amplifying small geometric asymmetries at the vehicle nose. At the 

higher angles of attack, the nose asymmetries do not control the flow asymmetry. It is 

this higher angle-of-attack regime where the naturally occurring asymmetric flow 

exists. Samples of such experiments can be found in Ref 18 and 22. In Ref 21, a cone 

cylinder is rolled about its axis at a constant high angle of attack. A continuous 

variation in side force was measured, indicating that the asymmetries are being 

controlled by a slight geometric asymmetry at the nose. When the angle of attack war; 

increased further, the flow remained steady and an unstable situation was 

encountered. The side force exhibited only two values (one the negative of the other) 

as the model was rolled. This indicates that while small geometric irregularities may 

be triggering  the   asymmetry,  there  is  a  basic  instability  in  the  flow field. 



Computationally, this would manifest itself by an instability in-the symmetric solution. 
Above a critical angle of attack, the only way to maintain a symmetric solution is to 
impose symmetry. Arbitrarily small perturbations, either truncation or even machine 
round-off error, will push the symmetric solution to one of the stable mirror image 
asymmetric flows. Both the Euler and Navier-Stokes conical flow solutions have 
exhibited this phenomenon (see Ref 14 and 15, for example). 

When started from symmetric initial conditions, the conical solutions presented 
in Ref 15 would be driven to the symmetric solution until the residuals approached the 
truncation error of the machine. At this point, the residual would rise almost to its 
original level and then diminish again and finally converge to machine zero. The 
solution would then converge to one of the two mirror image asymmetric solutions. It 
was also discovered that the solution could be driven directly to the asymmetric 
solution by specifying asymmetric initial conditions. In the first case, truncation error 
was the asymmetric trigger, while in the second, it was the asymmetric initial 
conditions. The solutions presented in Ref 15 indicated the sudden onset of 
bifurcated, asymmetric, solutions at a critical ratio of incidence to cone half angle of 
somewhat greater than two. It was also discovered that with increasing incidence the 
side force peaked, and then the bifurcated asymmetric soluiions rapidly returned to a 
single symmetric one with further increase in incidence. 

It was the intent of the current research project to uncover the root cause of 
asymmetric separated conical flow. The possibility that a flow singularity was related 
to the first occurrence of the phenomenon was investigated. There was some 
evidence that the first appearance of a saddle/node combination signaled the 
instability in the symmetric flow. In particular, this seems to be the case for circular 
cones. The study, the details of which are presented in Section 2.1, indicates that the 
occurrence of the node/saddle and the instability become significantly different for 
cross sections other than circular. An analysis of different regions of the flow field 
presented in Section 2.2 indicated that while only the region near the lee plane was 
unstable, above the critical angle of attack the instability couldn't be isolated any 
farther than a region containing the two vortex cores. An Orr-Sommerfeld local 
stability analysis (see Section 2.3) failed, indicating again that the instability was 
cause by a somewhat global phenomenon. This was substantiated by a detailed 
study in the flow as it transitioned from symmetric to asymmetric. This is discussed in 
Section 2.4.   The findings of this research are summarized in Section 3.   Appendix A 



presents results not directly related to the cause of asymmetric separation but to the 
effect of nose tip spinning on this phenomenon. 



2.  RESULTS OF THE INVESTIGATIONS 

The work horse of this investigation was a conical Navier-Stokes solver. The 

flow considered here is supersonic, so that if the geometry is self similar with respect 

to its axis and the flow is assumed inviscid, all variables would be independent of the 

spherical coordinate (R, Fig. 1). This results in a conical computation, i. e., two- 

dimensional in the cross-flow plane (R = constant). The first computational results 

demonstrating asymmetric separation - the small disturbance calculation [7] and the 

Euler results [14] - were both two-dimensional in the cross-flow plane. The small 

disturbance assumption neglects derivatives in the axial (z, Fig. 1) direction resulting 

in the two-dimensional Laplace's equation in the cross-flow plane whether the free 

steam is supersonic or subsonic. In the case of the fully nonlinear Euler model, as 

long as there is no upstream influence (i. e., the flow remains supersonic) and the 

separation lines are straight, the flow is absolutely conical. Both the models are 

inviscid, requiring the specification of the separation line location. In some sense it 

was this restriction on the models which shed light on the phenomenon of asymmetric 

separation because the anomaly first appeared with symmetrically specified 

separation points. This indicates that the instability in the symmetric flow above the 

critical angle of attack in inherently inviscid. These two computational models 

demonstrated clearly that the phenomenon under consideration here is both inviscid 

and conical. The viscous terms are added in the calculation used here in order to 

avoid the requirement of specifying separation line location while the conical 

assumption is retained to keep the computation two dimensional. Keeping the 

computation two dimensional enabled the investigation to be carried out with a 

minimum of concern for numerical inaccuracy. Very fine grids (58 points in the r 
direction and 96 in the 9 dirpction, Fig. 1) were used throughout this study and all 

calculations were continued until the residual in the iteration scheme reached 

machine zero. It has been demonstrated (Ref 15) that both these issues are very 

important in the flows considered here. On today's supercomputers, fully three- 

dimensional Navior-Stokes so'vers can't be run with enough grid points or too small 

enough residuals to eliminate concerns of numerical inaccuracies. The conclusion 

reached in Ref 16, that an asymmetric disturbance is required to maintain an 

asymmetric flow, is tainted by the fact that it is based on an underresolved and 

underconverged 3-D Navier-Stokes computation. 



The first Navier-Stokes computations of asymmetric separated flow were done 
using a center difference finite volume code (Ref 15). The computational procedures 
used in this code are detailed in Ref 23, 24, and 25. The computation is formally 
second order in space; it requires a fourth-order added dissipation to avoid odd-even 
decoupling and second-order dissipation to stabilize the computation near shocks. 
The present investigation uses a third-order upwind biased scheme similar to that 
present in Ref 26. The scheme needs no explicitly added dissipation. The odd-even 
decoupling is eliminated by upwind differencing, and in the cases studied here the 
shocks were so weak that no shock dissipation was needed. Figure 2 compares 
results from the centered code (Ref 15) to those of the upwind code. The free-stream 
conditions are those used as a standard for the rest of this report: 5-deg cone at M„> = 
1.8 and a Reynolds number based on the distance (R, Fig. 1) from the cone apex, i. e., 
Re = 105. The plot shows side force as a function of angle of attack. The experimental 
data of Peak (Ref 4) is included for comparison. The two computations compare well 
up to the maximum in side force (a/5 = 4). Both codes predict the same critical angle 

of attack (i.e. the angle of attack at which the side force begins to grow from zero). The 
centered code continues to predict steady flow above this angle of attack while the 
upwind code predicts unsteady flow. The rapid drop in the experimental side may be 
due to unsteady vortex shedding. Above a/6 = 4.9, there is no question but that the 
flow is unsteady expenmentally while the centered code predicts steady flow up to a/5 

= 5.9. It was noted in Ref 15 that numerical dissipation has a tendency to stabilize 
unsteady flows. For this reason, the Navier-Stokes computations of the present 
investigation were performed with the upwind code. 

2.1    CORRELATION OF FIRST APPEARANCE OF SADDLE/NODE & CRITICAL 
ANGLE OF ATTACK 

It had been noted experimentally (Ref 4) that the critical angle of attack 
corresponded closely to the first appearance of a saddle/node combination in the lee 
symmetry plane of circular cones. The cross-flow streamline pattern of the symmetry 
imposed solution below and above the angle of attack at which the saddle first 
appears is shown in Fig. 3a and 3b, respectively. The saddle and node are pointed 
out in Fig. 3b while only one stagnation point (a node) exist in the stream line pattern 
of Fig. 3a, it being on the surface of the cone in the lee plane. The stagnation points 
may be clearer in the lee plane velocity profiles of Fig. 4a and b. The lower 
stagnation point is the saddle while the upper is the node. 
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It is indeed true that for a 5-deg half-angle circular cone at M«, = 1.8 the critical 
angle of attack corresponds to the angle of attack at which the saddle/node first 
appears in the flow field. This was determined by increasing the angle of attack in 
small increments near the critical angle of attack. In order to determine if the finding 
was universal, the cross-sectional geometry of the configuration was varied. Figure 5 
shows regions of solutions in the angle of attack / cross-sectional eccentricity space. 
The "one solution" region corresponds to the subcritical flow where only the 
symmetric solution exists. The "two solutions" correspond to the mirror image 
asymmetric flows. The "no solution" region corresponds to angles of attack and 
eccentricities where the iteration scheme used could not converge to a steady 
solution. It is assumed that the flow is indeed unsteady (i. e., shedding vortices) in this 
area of the angle of attack eccentricity space. In the case of the circular cone (b/a = 
1) the solution follows a simple trend as the angle of angle of attack is increased. 
Only the symmetric solution exists until the critical angle of attack is reached (a = 12°) 
above which the two asymmetric solution exist until the flow goes unsteady above a ■ 
22°. In the case of a vertically elongated ellipse (b/a = 1.8), the solution variation is 
not as simple. The critical a is 8°, but the flow becomes symmetric again at a = 16° 
before it goes unsteady at a = 20°. Above b/a = 1.9 and below b/a = 0.7, the 
symmetric flow goes unsteady without passing through a region of asymmetric flow. 
Also in Fig. 5 is a curve showing the onset of saddle in terms of angle of attack and 
eccentricity. The onset of the saddle corresponds very closely to the critical angle of 
attack for eccentricities between 0.9 and 1.6, but outside this range there is a 
significant difference. It can not be concluded that the saddle is the singular point in 
the flow which destabilizes the symmetric solution. The phenomenon seems 
somewhat global and as such can not be attributed to an isolated flow feature. 

The interaction of the two vortices near the lee plane is obviously related to the 
phenomenon of asymmetric separation. The study of the effect of cross-sectional 
eccentricity summarized in Fig. 5 further substantiates this assumption. As the cross 
section becomes flatter (lower b/a), the strength of the separation vortices increases, 
and yet the critical angle of attack goes up as b/a decreases below 1.5. This must be 
attributed to the fact that the vortices are moving away from each as the cross section 
approaches a flat plate. On the other hand, while the vortices are very close for 
vertically elongated ellipses (b/a > 1), the critical angle of attack again goes up for 
b/a > 1.5 because the vortices are very weak.  An attempt was made to quantify this 
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process, but the difficulty in evaluating the circulation around the numerically 

computed vortices made this impossible. 
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2.2   REGIONAL ISOLATION OF ASYMMETRY 

This aspect of the investigation involved trying to pinpoint the instability in the 
symmetric flow above the critical angle of attack by isolating regions of the flow. The 
symmetric solution was generated by imposing symmetry on the calculation and 
continuing until machine zero was reached. With the symmetric solution as initial 
conditions, only portions of the flow were computed with the symmetry condition 
removed. In addition, an asymmetric disturbance was injected in the computed 
portion of the flow. The hope was that if the computed region of the flow included the 
unstable point the computation would not converge, while if the singular point was not 
surrounded the computation would converge to the original symmetric solution. 
Consider Fig. 6 in which a region of the flow surrounding the vortices is bounded by a 
dashed line. The flow field shown is that computed by imposing symmetry. A 
computation is started with this symmetric solution used as initial conditions. 
Moreover, the flow field outside the dashed box is held fixed at these symmetric 
conditions. The flow conditions inside the box are asymmetrically perturbed, and the 
computation is continued. The hope was that if the box did not include any unstable 
flow features, the computation would converge to the symmetric result since essential 
symmetry was being imposed in the unstable portion of the flow, and only the stable 
portion was allowed to be asymmetric. This is true of the region in the dashed box 
shown in Fig. 7. The region is far from the vortices and is benign. On the other hand, 
no convergence is achieved in the computation when the region shown in Fig. 6 is 
allowed to change (and is indeed asymmetrically perturbed.). It seems obvious that in 
the case of the region inside the box of Fig. 6, the computed portion of the flow is 
unstable, and the symmetric boundary conditions on the dashed line are incompatible 
with what the flow inside the box wants to converge to. With these encouraging 
results, the computed region (i.e., the box of Fig. 6) was shrunk to try to further isolate 
the unstable portion of the flow field. This is the point where the technique failed. As 
long as the vortex centers were encompassed, the computation would not converge. 
If the region computed was too small to encompass the vortices, convergence would 
be reached. For example, the computation of the region shown in Fig. 8 converged to 
the symmetric result. 

This finding indicated again that the instability was of a somewhat global 
nature. At a very minimum, the vortices had to be included in order for the instability 
to exhibit itself.  It seems to be the interaction of the vortices, in a global sense, and 
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Fig. 6  Isolation Study, Region Containing Vortice« 
(Moo = 1.8,6 = 5°, a = 20°, Re = 105) 

Fig. 7  Isolation Study, Benign Region - Converg 
(NL, = 1.8,6 = 5°, a = 20°, Re = 105) 

15 



', Region Near Symmetry Plane 
l,8 = 5°>a=20o

>Res105) 

16 



not a singular point in the symmetry plane which is the cause of the instability in the 
symmetric solution. This instability in turn results in the asymmetric flow. 

2.3   LOCAL STABILITY ANALYSIS 

The local stability analysis considered here is based on an Orr-Sommerfeld 
type procedure. First, the viscous terms in the governing equations are neglected. It 
has been shown in Ref 7 and 14 that the phenomenon of asymmetric separation is 
inherently inviscid. The instability in the symmetric solution appears at the critical 
angle of attack without the viscous terms included in the governing equations of Ref 7 
and 14. The results presented therein prove that not only is the phenomenon inviscid, 
but it is also governed by the conical flow equations. The stability analysis 
considered here starts from the conical continuity and the following Euler equations: 

pt + 2pw/R + (pu sin8)e/R sinG + (pv)<j>/R sinG = 0 

Ut + uue/R +vu<j>/R sinG + wu/R - v2 cotG/R = -pe/yrR 

vt v uve/R +w^R sinG + wv/R - uv cotG/R = -pyyrR sinG 

wt + uwe/R +VW0/R sinG - (u2+v2)/R = 0 

The conical coordinates R, § and G and velocity components u, v and w are defined 
in Fig. 1, and p and p are the density and pressure. All independent variables are 
then assumed to be the sum of a "base flow field" (p.U.V.W) and a small perturbation 
(p'.u'.v'.w*). It is the stability of the numerically generated symmetric solution being 
investigated here so that this is the base flow field used. All variations in entropy are 
third order in the perturbation's quantities so that they are negligible. The equation of 
state becomes p = pYso that the pressure derivative p<j>in the above equations can be 

replaced by YpV"1p'$ (P8 is replaced similarly). After substituting in terms of the 

perturbation variables and neglecting all second-order terms in the perturbation 
quantities, and while remembering that the base solution satisfies the governing 
equations, a linear system of equations is arrived at: 

p't + 2(p'W+w,p)/R + [(p'U + u'p )sinG]e/R sinG + (pV + pv')<j>/R sinG = 0 
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u't + (UiT + u'U)e/R + (Vu1 + v' U)(j,/R sine + (Wu1 + w'U)/R - 2VV cotG/R = -p'ep^/R 

v't + (UV + uV)e/R + (Vv'yR sinG + (Wv' + WV)/R + (Uv' + uV) cotG/R = 

-p<{,pY-2/R sinG 

Wt + (UW + u'W)0/R +(VW + Wv*)<j,/R sinG - 2(Uu*+Vv')/R = 0 

At this point the form of the unsteady oscillation is assumed: 

p' = p"(<j>) e'(ße-ui) 

u' = u"((j>) e '(ße-cot) 

v' = v"(<t)) e'iß0-^) 

W = wM(())) e' (ßö-cöt) 

Here ß is real and is related to the wavelength of the disturbance (the wavelength X = 
2rc/ß). The quantity (0 is complex, with its real part being the frequency of the 
oscillation and its imaginary part the amplification factor. The amplitude functions 
(p",un,vM,w,,) are all considered functions only of <(> in this form of the disturbance. An 
oscillation of the form f'=fn(G) e^W-ot) (f={p,u,v,w}) was also considered. After 

substituting into the linear governing equations, a system of linear, homogeneous 
ODEs results. The perturbations to the base flow are assumed to vanish at the 
boundaries of the computational domain, making the boundary conditions of the linear 
problem homogeneous. The resulting mathematical problem is a two-point boundary 
value problem for the system of equations: 

Adf'7d<j> + Br-icor = 0 

where f" = {p",u",v",w"} and A and B are 4x4 coefficient matrices made up of the 
given base flow field. A and B are also functions of the wavelength parameter ß. The 
boundary conditions on the perturbation vector f" are f" = 0 at both § = (j>body and § 
= $tar field- The boundary value problem has a non-trivial solution (i. e., non-zero 
eigenvectors f") for only certain value of co; these are the eigenvalues of the problem. 
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These are computed for all possible wavelengths. If any eigenvalue has a positive 
imaginary part for a disturbance of a particular wavelength, the base flow is unstable 
to that disturbance. 

This procedure follows the classical Orr-Somerfeld local stability analysis (Ref 
27). It has been used successfully to investigate the stability of given velocity profiles 
in the study of transition from laminar to turbulent flow. It is this type of stability 
analysis which predicts that it is inflection points in velocity profiles that are the 
source of the instability in boundary layer type flows. This same procedure was used 
successfully to study the stability of numerical solutions for the flow in the wake of 
cylinders and flat plates (Ref 28-29). The inviscid Orr-Somerfeld boundary value 
problem is defined by the ODE: 

(U - co/ß) (d2y/dy2 - ß2y) - d2U/dy2 y = 0 

with boundary conditions y = 0 at y = 0 and y = °° . The system of equations 
(continuity and two momenta) is reduced to a single equation by using stream function 
formulation. Here y is the amplitude function associated with the perturbation of the 
stream function (y is the eigenvalue of the boundary value problem) and U is the base 
velocity profile. Given a velocity profile, its stability is determined by computing all 
eigenvalues (co) for each wavelength parameter (ß). If the eigenvalues have any 
positive imaginary part, the velocity profile is unstable. 

The numerical procedure for solving the eigenvalue problem is relatively 
straightforward. If the inviscid Orr-Somerfeld equations are discretized using a 
centered difference scheme, a system of equations of the following form results: 

(Uj - ovß) {(yM - 2yj + yM)/Ay2 - ß2yj} - (d2u/dy2)j y = 0 

or in matrix form: 

ay + (Ob y = 0 

where now y is the vector {yi, y2, y3, .. yimax} of length imax (the number of grid 

points considered) and a and b are the tridiagonal coefficient matrices. If this 
equation is simply rearranged into the form 
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[b"1 a] y + (o v = 0, 

the problem is reduced to finding the eigenvalues and eigenvectors of a matrix 

c = b_1 a. This is done directly with computer library routines. In the present work the 

computer library routines EVCCG and EVLCG were used; these were obtained from 

the IMSL library (Ref 30) which is available on Grumman's Cray YMP. In this way 

imax-2 (because the two boundary points are eliminated) eigenvalues of co are 

determined. 

In order to check the accuracy of the scheme used to compute the 

eigenvalues, a boundary value problem with an analytical solution was considered. 

The classical "rotating string" problem was chosen: 

d2y/dx2 + coy = 0 

y(0) = 0andy(1) = 0. 

The exact eigenvalue corresponding to the mth mode for this problem is com = m2 n2. 

With the corresponding eigenvalues, ym= C sin(m7cx) where C is an arbitrary 

constant. The finite difference form of the rotating string ODE is: 

(y,+1 -2y,+ yi-i)/Ax2 + a)yl = 0 

For this simple problem the matrix b is the identity matrix {b\\ = 1 and bjj = 0 for 

i*j). The matrix a is simply the second derivative tridiagonal matrix (a\\ = -2/Ax2, an-i = 

a»+i * 1/Ax2 and all other a^ = 0). Figure 9 compares results of computations using 

three different grids to solve the rotating string problem. The figure is a plot of 

eigenvalues normalized with respect to its exact value vs mode. It is clear that only 

with the very fine grid (400 points) are the higher modes computed accurately. This 

result indicated that a more accurate scheme was required. In stability analyses, 

spectral methods are popular because of their increased accuracy over finite 

difference methods. The procedure starts by assuming a truncated Fourier series for 

the eigenvectors y - Z YjSin(iTtx). The sum is over i=1 to imax. The sine series is 

chosen so that the boundary conditions (y(0) = y(1) = 0) are automatically satisfied. 

After substitution, the rotating string ODE becomes: 
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-I i27i2Yj sin (i7tx) + a) X Yj sin(ircx) = 0. 

The equation must be satisfied at (imax-2) points in order to solve for the (imax-2) 

coefficients Yj.   (The two end points are omitted since the boundary conditions are 

automatically satisfied.)   This leads to a system of linear equations similar to that 

arrived at with the finite difference scheme. The matrices a and b are now full and not 

tridiagonal: 

aij = -j2rc2 sin(j7CXj) 

by = sin(j7rxj) 

The library routines EVCCG and EVLCG (Ref 30) can find the eigenvalues and 

eigenvectors of full matrices as well as tridiagonals. The spectral method gives the 

exact solution to the string problem independent of how many point terms of the series 

are retained. This test is somewhat unfair since the sine series is the exact solution in 

this case. 

The next problem on which the method was tested was the inviscid Orr- 

Sommerfeld problem. The stability of two velocity profiles U(y) was considered. 

Figure 10 shows both a stable and an unstable velocity profile. The stable velocity 

profile is attached. In addition, the stable profile has no inflection points. All the 

eigenvalues to are real (i. e., have zero imaginary parts) for this profile. All values of 

the wavelength parameter ß were interrogated. On the other hand, when the 

separated profile of Fig. 10 was considered, unstable eigenvalues were found. 

Figure 11 shows the maximum imaginary part of the eigenvalues (0 as a function of 

wavelength parameter ß from 0 to n. The unstable velocity profile of Fig. 10 is 

unstable to disturbances for ß < 2.8 and stable to disturbances with larger values of ß 

(i. e., smaller wavelengths). Also shown in Fig. 11 is a comparison of the eigenvalues 

computed with the finite difference scheme (200 points) and the spectral method (200 

term series). This comparison shows that the advantage of using the spectral method 

is lost in the case of the inviscid Orr-Sommerfeld problem. Finally, Fig. 12 compares 

the computed real part of the eigenvector corresponding to the maximum eigenvalue 

(lm((o) = 0.224) for ß = 0. Again this comparison shows little advantage of the spectral 

method. 
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The spectral method was applied directly to the system of conical equations, 

A dT/cty + B r -1 co r = 0, 

in an effort to determine the stability of the supercritical flow computed by imposing 
symmetry. A Fourier sine series of the form X FHj sin(ijc<t>) is assumed for the vector f \ 
The 4x4 system of ODEs is satisfied at imax-2 points in the flow field. These points are 
in a cross-flow plane (the flow is always assumed conical) but in addition the are also 
on a ray 0 = a constant (see Fig. 1). The Orr-Sommerfeld stability analysis in one- 
dimensional in nature. As in the case of the inviscid Orr-Sommerfeld equation the 
matrices a and b are formed and the resulting linear system becomes: 

aF + cobF = 0. 

Now the vector F is 4 elements for each imax-2 points in the flow field. The matrices a 
and b are 4x4x(imax-2)x(imax-2). Even with these large matrices, the Cray was able 
to evaluate their eigenvalues very quickly. 

The results of the analysis were somewhat disappointing. The problem seems 
to be imbedded in the assumption of the form of the disturbance. The analysis always 
predicts unstable flow, even if low angles of attack are considered. This is obviously 
incorrect; the numerical scheme is able to compute stable flow fields below the critical 
angle of attack. The result predicted by the stability must be due to the assumptions 
made during its development. The Orr-Sommerfeld analysis has been used 
successfully to study the stability of boundary layer type flows (Ref 27) where the 
variations in flow variables in the main flow direction are small. This is not true in the 
cross-flows considered here. The roles of the two cross-flow plane coordinates were 
reversed in the disturbance (i. e., f*=f"(6) e' (ß4>—tot)) to no avail. All flows have some 

positive lm(w) for some range of wavelength parameter p. This result implies that the 
phenomenon is fully two-dimensional and that the cause of the instability may not be 
attributable to a singular point such as an inflection point in a boundary layer profile. 
It is clear that the interaction that results in the instability considered here is somewhat 
global in nature. 
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2.4 TRANSITION OF THE FLOW FROM THE SYMMETRIC SOLUTION 

This investigation was carried out by starting a Navier-Stokes solver with a 
symmetric solution and very carefully monitoring the transition to the asymmetric flow. 
The supercritical symmetric solution was generated by imposing symmetry (half-plane 
calculation). The development of the asymmetric solution was monitored by 
computing the difference between the components of the solution vector at left and 
right image points. Those components that should be symmetric are differenced and 
the one which is anti-symmetric is added. The solution vector Q has five components 
{p,pU,pV,pW,E}. The components p,pU,pW and E should be symmetric while pV 

should be anti-symmetric. Let 5Q s {PLPR,(PU)L_(PU)R'(PV)L+(PV)R.(PW)L- 

(PW)R,EL-ER) at each point in the flow field. At every step of the iteration, 8Q is 
monitored. Figure 13 shows the maximum asymmetry (8Q) and the maximum residual 
(RES) as a function of iteration step. The maximums, both ÖQ and RES, are the 
maximums of the five components of the vectors dQ and RES at each grid point and in 
turn the maximum over all grid points in the flow field. The free-stream conditions for 
the iteration history shown m Fig. 13 are supercirtical (5-deg cone at a ■ 20° and M« 
= 1.8) while the initial flow field was computed using the symmetry condition. 

The forced symmetric initial conditions result in a maximum ÖQ of 10-12 and a 
maximum RES of 10/14 after the first step of the unforced (full-plane) iteration. The 
initial conditions in the unforced calculation are generated by reflection of the 
symmetric solution, resulting in a ÖQ of absolute zero. The asymmetry becomes 10'12 

after the first step of the unforced calculation because this is machine zero for this 
quantity for the scheme used here. This is the smallest value of 5Q achievable. If a 
subcritical case is considered (for example, a = 10°) 8Q is 10*12 at the converged 
solution. The RES is 10"14 because the symmetric iteration was continued until the 
residual reached that level (machine zero for this quantity). 

It is interesting to note the way in which both these quantities grow from their 
initial values in Fig. 13. The asymmetry ÖQ grows from the beginning of the unforced 
calculation. This is to be expected since the forced symmetric solution is indeed 
unstable. On the other hand, the residual stays at 1014 for the first 225 steps of the 
iteration; this is somewhat confusing. Why doesn't the residual grow from the 
beginning of the iteration as does the asymmetry? It must be remembered, the 
iteration scheme is designed to force the residual to machine zero and to keep it there 
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once it arrives. The symmetric solution is a solution to the differential equations, 
unstable, but yet a solution. With the symmetric flow assumed, the residual is machine 
zero. The iteration scheme is able to predict corrections to the solution which keep 
the residual at 10/14 until the asymmetric disturbance gets too large (10-9). Once the 
asymmetric disturbance is large enough, the iteration scheme predicts asymmetric 
corrections large enough to move the solution toward the asymmetric stable solution. 
The stable asymmetric solution is essentially established at 800 iteration steps. It 
should be noted that ÖQ does not change after 800 steps. Machine zero is arrived at 
after about 1800 steps, where the stable asymmetric is firmly established. The 
convergence history of Fig. 13 is typical of a nonlinear problem with two solutions, 
one stable and the other unstable. With no asymmetric disturbance induced, the 
iteration scheme will tend toward the symmetric solution, the calculation being 
inherently symmetric. Once the natural asymmetry, due to machine roundoff, get 
significant enough to impact the iteration scheme, the asymmetric solution will be 
approached. The iteration scheme will tend toward the closest solution whether or not 
it is stable; the iteration scheme is unable to maintain an unstable solution as long as it 
allows any level of asymmetry. Another interesting aspect of Fig. 13 is the 
exponential growth of both RES and 5Q (the plot is of logio{RES and 5Q}. The growth 
rate for both is a constant 0.017. It should be pointed out that the iteration scheme 
used here is not time accurate so that this growth has no physical meaning. 

The development of the flow shown in Fig. 13 was studied in detail using a 
computer animation technique presented in Ref 31. The transition of the vortex pattern 
from symmetric to asymmetric is shown clearly in the selected frames of the animation 
in Fig. 14. The color shading corresponds to entropy, which shows the transition of 
the vortices very clearly. Figure 14 shows the first 1000 steps of the iteration in 
increments of just over 15 steps between frames they are arranged matrix form with 
increasing steps along rows. The flow seems symmetric for a large part of the iteration 
until frame (6,5) when the asymmetry seems to develop quickly (this corresponds to 
step 800 of the iteration in Fig. 13). It is very difficult to determine where the 
asymmetry first appears in an animation made up of frames such as those presented in 
Fig. 14. 

An animation of the root mean square of the vector $Q (i. e., I ÖQI) does shed 
some light on the transition to the asymmetric solution from the symmetric one. Figure 
15 shows selected frames of an animation in which the color shading corresponds to 
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Iogio{ I 5Q I} at each point in the flow field. It should be noted that I 50 | is 
symmetric because it is a difference of right-left or left-right image points. Figure 15 
shows the first 200 steps of the iteration with an increment of just over 3 steps between 
frames. The evolution of 15Q | is cyclic. This can be seen by comparing rows 4, 5, 6 
and 7 of Fig. 15. At the beginning of the iteration, | ÖQ I is essentially machine zero 
so that the initial frames of Fig. 15 show no structure (see row 1). As the iteration 
proceeds, 18Q I grows and a structure becomes apparent. This structure is most 
clearly shown in row 5 of Fig. 15. The asymmetry starts at the edge of the rolled up 
vortex sheet. It progresses both inward toward the vortex center and outward into the 
flow field. Note the dark blue color which first appears in frame (5,1) of Fig. 15 and 
finally dominates a large region around the vortices in last frame of Fig. 15 (7,9). It is 
clear from the animation of j 601 that the transition from symmetric to asymmetric flow 
originates in the region of the lee vortices. It is also quite clear that the phenomenon 
is somewhat global in that the asymmetry does not seem to originate from a point in 
the flow field but instead starts simultaneously throughout an annulus surrounding the 
vortex centers. This result, combined with the results presented in the three previous 
sections of this report, proves that the instability in the symmetric flow above the 
critical angle of attack, which leads to asymmetric flow, is concentrated in the vortex 
region but can not be isolated any further. 
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3. CONCLUSIONS & FUTURE WORK 

AH of the data generated and analyzed in the present investigation point to the 
conclusion that the cause of asymmetric separated flow on slender-nosed vehicles at 
high angle of attack is the interaction of the vortices near the lee plane. This 
interaction is somewhat global and as such the instability in the symmetric flow (which 
leads to the asymmetry) can not be traced to any particular flow feature. The 
likelihood of the phenomenon occuring depends on a quantitative measure of this 
vortex interaction. The present study indicates that the distance between the vortex 
centers and the circulation around the vortices are two parameters which play a 
significant role in the phenomena. Limiting the interaction of the vortices by placing 
obstacles between them has been known to reduce the side force caused by this 
phenomenon for many years. Increasing the strength of either or both of the vortices 
tends to increase the asymmetry, while separating the vortices tends to decrease the 
asymmetry. From a heuristic point of view, it seems that the mechanism which triggers 
the asymmetric phenomenon is the two vortices "rolling over" one another. The 
vortices could be likened to two cylinders touching each other and rotating in 
opposite directions. If their axes of rotation were allowed to move, their stable position 
may not have the line connecting their axis of rotation horizontal. Compare, for 
example, the unstable vortex pattern of frame (1,1) in Fig. 14 with the stable pattern of 
frame (7,9). This may depend on the speed of rotation (the vortex strength) and/or the 
radius of the cylinders (distance between vortex centers). This analogy is one that 
has been applied to the wake behind a cylinder (i. e., a Karman vortex street). In 
addition, the animation of Fig. 15 clearly shows that the asymmetry begins in an 
annulus surrounding the vortex core where the type of interaction just discussed 
would occur. 

Today's maneuvering demands on both aircraft and missiles has made the 
phenomenon of asymmetric separation more important then ever before. In the past 
research was simply directed toward delaying the phenomenon to higher angles of 
attack. Today's research is intended to harness the yawing force produced by the 
phenomenon to supplement lost rudder effectiveness at high a. A yawing moment is 

produced by the side force generated by asymmetrically disposed vortices near the 
vehicle nose. If a device could be placed at the nose tip to control the direction of this 
side force rudder power would be supplemented at high a.   Grumman's X-29 has 
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already demonstrated this capability in flight tests (Ret 32). An important extension of 

the current research is in the area of using vortex asymmetry as a control device at 

high angle of attack. A more fundamental understanding of the phenomenon is 

necessary to be able to use it effectively and reliably. In the flight tests of Ref. 32, 

small thrusters were used successfully to control asymmetric flow. If a more subtle 

device were to be used, a deeper understanding of the phenomenon wouid be 

required. A subtle device would have quick response time and be cheap and easy to 

install on existing vehicles. Devices such as very small vanes, flaps, or even piezo- 

electric devices could be used to control vortex asymmetry. The yaw control gained 

from minute deflection would make these very powerful devices. In order to use these 

very subtle schemes, a more detailed understanding of all the parameters affecting 

the phenomenon must be available. 

The work of Thomas (Ref 19) showed a significant effect of conical Reynolds 

number (Reynolds number based on the distance from the apex of the cone) on the 
asymmetry of the flow about a 5-deg circular cone at M«, « 1.8 and a = 20°. It was 

reported (Ref 19) that as the local Reynolds number is reduced below 106- the side 

force is reduced, and at a critical Reynolds number of 30,000, the side force is zero. 

Figure 16 shows the variation in critical Reynolds number with free-stream Mach 
number for a 5-deg circular cone at a = 18°. Associated with a critical Reynolds 

number (Recr) is a critical length scale RecrVoo/U«. It was reported in Ref 19 that if an 

asymmetry in the nose geometry of a three-dimensional body exists and if the 

Reynolds number based on a length scale associated with this disturbance is 

supercritical (in the conical sense), the fully three-dimensional flow will be 
asymmetric. In the inviscid limit v„->0, the critical length scale vanishes and any 

infinitesimal asymetric disturbance at the nose will result in asymmetric flow. This 

result is consistent with the findings of Ref 7 and 14. It is interesting to compute the 

critical length scales for air at 10,000-ft altitude at the two limits of Fig. 16, M« = 1.2 

and Moo = 3. At M», = 1 2 it is 0.02 in. and at rVU, = 3 it is 0.07 in. These numbers are 

very small in comparison to a 60-ft fighter aircraft or even a 5-ft long missile. This 
implies that asymmetries in the first 0.002%-»0.1% of an aircraft or missile nose will 

cause an asymmetric vortex pattern, which in turn will result in a large side force. 

Presumably asymmetric perturbations of this same order of magnitude can control the 

direction of the side force. Conceivably the design goal of any control device will be 

to overcome the "natural" asymmetry built into the nose (i. e., the asymmetry due to 

manufacturing tolerances).   Finally, the placement of the control may be critical.   It 
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would seem that the device must affect the flow in the first 0.002%->0.1% of the 

vehicle in order to be effective. The next phase of the current research project is 
intended to answer these questions by gaining a deeper understanding of all the 
parameters affecting the phenomenon. 

The research reported on here has investigated the origin of the instability in 
the symmetric conical flow about pointed bodies at high angle of attack. This 
research was founded on the assumption of conical flow for good reason. The 
conical flow assumption reduces the problem to a two-dimensional one, thereby 
making it trackable from a computational point of view. In addition, the close 
relationship between the conical computational results and experimental data (see, 
for example, Fig. 2) proves that some aspects of the physics are captured in the 
conical governing equations. There is no question but that the conical equations can 
be used effectively in many scientific/engineering investigations into this 
phenomenon. In particular, the discussion of the previous paragraph shows how 
conical computations can be used to set design requirements for any system intended 
to control vortex asymmetries effectively. In the next phase of the current research 
project the conical equations would be used to determine the critical length scale 
(Recr-Voo/Uoo) as a function of geometry (cone angle and cross-sectional shape) and 

angle of attack. These studies would be preceded by a careful evaluation of 
accuracy of these conical computations. In Ref 19 it was noted that the critical 
Reynolds number was somewhat sensitive to grid resolution. All the work in this area 
(experimental, analytical, and computational) has indicated that the flow under 
consideration is sensitive to small changes in many of the parameters of the problem. 
The first step in a computational effort is to be sure that all the parameters affecting the 
phenomenon are of a physical nature and not significantly affected by numerical 
error. 

The conical assumption can not be used to understand all aspects of this 
phenomenon. Some fully three-dimensional computations must be used. The problem 
with all the fully three-dimensional Navier-Stokes computations carried out thus far 
has been uncertainties near the treatment of nose tip (Ref 16-20). These uncertainties 
may not cause major inaccuracies in "standard" flow situations but by now it should 
be obvious that the nose tip region is critical to the accuracy of the computation of 
asymmetric separated flow. The fully three-dimensional computations proposed as 
part of the next phase of the current research effort will concentrate on the accurate 
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computation of the nose region. The only model for this region which can resolve the 
details of the flow is one in which the nose is assumed blunt. This is the only way to 
resolve the development of the boundary layer in this region. It has been shown 
experimentally (Ref 2) that nose blunting has a significant effect on the phenomenon 
of asymmetric separation. Only by assuming the nose blunt and resolving this 
bluntness can this effect be controlled. Figure 17 shows the grid that would be used 
to resolve this phenomenon properly. Figure 17a shows the global grid while Fig. 17b 
shows the grid in the vicinity of the nose tip. With this grid the development of the 
boundary layer will be resolved properly. For the first time, the impact of the details of 
the development of the boundary layer on asymmetric separation will assessed. The 
computational results of Ref 16 to 20 in essence let the numerics blunten the nose tip 
with artificial dissipation. Secondly, in light of the results of Ref 15, it is obvious that 
any numerical result not converged to machine zero is suspect. All iterations in the 
three-dimensional computations of the proposed effort will be continued to machine 
zero. Finally, numerical inaccuracies in the three-dimensional calculations will be 
monitored with grid refinement studies. 

The proposed continuation of this research is intended to determine the 
magnitude and the nature of perturbations required to control asymmetric separation, 
thereby making a direct impact on the design of devices capable of controlling this 
phenomenon. The flows considered during the next phase of this project will again be 
steady. The study of unsteady flow effects and their impact on the development of 
any control system (i. e., feedback loops) will be the subject of future proposals. 
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(a) Global Grid 

(b) Grid at Tip 

Fig. 17  Grid Designed to Resolve Tip of Blunt 10( 
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APPENDIX A -- INVESTIGATION OF TIP SPINNING 

An experimental investigation at SUNY at Stony Brook (Ret 33) uncovered a 
significant effect of nose spinning on asymmetric separation. There have been in the 
past studies of vortex control by nose spinning [34] but none as dramatic as that of Ref 
33. The vortices in the lee plane of a cone cylinder at high angle of attack are 
illuminated by a laser sheet places 0.5 meter from the apex. The first centimeter of the 
model is made to spin with a variable speed motor inside the model. The angle of 
attack is supercritical (i. e., the separated flow is asymmetric) at zero spin rate. The 
laser sheet shows clearly that the flow is asymmetric as the nose begins to spin. At 
low spin rates the flow, which had been steady at zero spin rate, becomes unsteady. 
Suddenly, at a particular spin rate, the flow becomes steady again and the vortices 
are symmetric. 

This experiment could only be approximated with the current conical Navier- 
Stokes computation. The surface boundary was modified to allow for a specified 
tangential speed. This is not a model of a spinning nose since the surface speed in a 
solid cone rotation would vary with axial location. Nonetheless, the results of this 
approximate computation are very interesting. As the surface speed was increased, 
the asymmetry was indeed reduced. Figure A-1 compares the entropy contours 
(which clearly show the vortices) for a zero tangential speed and 0.25X the free 
stream of sound. The reduction in the asymmetry is obvious. Figure A-2 shows the 
variation in side force as a function of surface speed. At zero spin rate three solutions 
exist: Cy = -0.25, Cy = 0.25 (the two mirror image solutions), and the symmetric 
unstable Cy = 0 solution. As the spin rate is increased from zero, starting from the Cy 
= -0.25 flow, the side force is decreased. Once the minimum value of -0.1 (at a spin 
rate of 0.25) is reached, it can no longer be reduced. If the spin rate is increased ever 
so slightly, the side force jumps to a value of almost 0.3. The very asymmetric flow for 
this condition is shown in Fig. A-3. If the spin rate is decreased starting from this 
condition, the side does not return to its negative values but remains positive. The 
hysteresis loop associated with this phenomenon is shown clearly in Fig. A-2. It must 
be pointed out that solutions connecting the two branches of the hysteresis loop (the 
dashed line of Fig. A-2) are all unstable and could not be computed (except for Cy = 0 
by imposing symmetry). A phenomenon similar to that described here has recently 
been noted experimentally [35].  The effect of nose spinning on high angle-of-attack 
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asymmetric flow and this apparent hysteresis loop should be the subject of future 

research. 
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(a)V-|7aoo-=0 (b)Vj/a « = 0.25 

Fig. A-1   Entropy Contours Tangential Speed = 0 & 0.25X Free-Stream Speed of Sound 
(Moo = 1.8, o = 5°, a = 20°, Re = 105) 
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A-2  Variation of Side Force with Tangential Speed (Moo = 1.8, 5 = 5°, a = 20°, Re = 105) 



Fig. A-3   Entropy Contours Tangential Speed 0.25X Free-Stream Speed of Sound, 
Positive Side Force (MM = 1.8, 6 = 5°, a = 20°, Re = 105) 


